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LETER TO THE EDITOR 

'Twisted' Clebsch-Gordan coefficients for SU,(2) 

Ya I Granovskii and A S Zhedanov 
Physics D e p m e n t ,  Donetsk University, Danetsk 340055, Ukraine 

Received 1 May 1992 

Abstract. A new approach to the Clebsch-Gardan problem for SU,(Z) is proposed. The 
'twisted' Clebsch-Gardan weficieots ( i c o c )  are defined to be tho overlaps between 
'twisted' connected and unconnected bases (being the q-analogues of rotated bases in 
standardSU(Z)).Theexplicit expression faricocisfound in terms ofbasic hypergeometric 
function .a, (Raczh q-polynomials). 

The quantum algebra SU,(2) is intrinsically anisotropic as is evident from its commuta- 
tion reiaiions 

[jD,j*l = *j* [j+,j-]=(sinh2wjo)/sinh o. (1) 

This property is closely related to its origin from the symmetry of the anisotropic 
XXZ spin chains ([1,2] and others) 

But then it signifies that the usual and somewhat trivial choice of the axis for 
quantization becomes important, so the previous freedom in that choice (as occurs for 
SU(2)) is lost. It means that exchange of the quantization axis (or more generally its 
rotation) might completely destroy the smooth rotation-invariant formulae. 

These considerations are intimately related to the Clebsch-Gordan problem dealing 
with the correlation between two b a s e e t h e  'unconnected' 

*,"" v,,m,@v,z'", 
and the 'connected' ( P I M  one: 

because all the projections m,, m2, M are supposed taken on the same axis. 
In the standard SU(2) algebra this assumption leads to no troubles: changing the 

axis is compensated by  a unitary transformation of the states. Moreover this change 
may be different for + and @, while C(JM; jlmlj2m2) itself remains unchanged. 

What is the state of affairs in the SU,(2) case? 
We may choose the basis $j ,m, j2m, in standard form 

cosh(w(2jo - 1 )) 
2 sinh2 o 

2 = j+j-t 
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is the Casimir operator for SU,(2) with eigenvalues 

cosh(o(2jj+ 1)) 
2 sinh’ w 

k,= 

and the dimension of the representation is equal to 2j+ I 
The ‘connected‘ basis mJM is defined by the relations 

JOQIM = MQ, = ( m !  + m2)QJM (40) 

~ J @ J M  k J @ J M  (46) 

( 5 )  J - . (1)+ji2) 

where lo, J, are the generators of SU,(2) being the ‘sum’ of the initial ones [3]: 

The formula (2) then yields the ‘longitudinal’ Clebsch-Gordan coefficients (LCGC) for 
SUJ2) (the term ‘longitudinal’ stresses that the generators j;’ are diagonal). 

The ‘twisted‘ basis +j,m,M is defined to be the eigenstate for K ,  and L: 

J + - I *  - .(I’ exp(wjb2’)+jY’exp(-wj!j“). 0 - l o  

where 

and 

L =  J_F(J,)+F*(J,)J++G(J,) (76) 
are rotated (‘twisted’) generators. 

The ansatz (7) is a generalization of the rotation in standard SU(2): 

u(e)j,u+(e)=sine(j++j_)/2+jocos e (8) 

with coefficients cos e and sin 0 replaced by the functions f(jo) and g(jo). 
The ‘twist’ of the ‘connected‘ basis is defined by another pair of the relations 

R2&JM = kI&JM L&,M = AM&IM (9) 

where K2 is the full Casimir operator 

K ,  = 12,. 
For the schemes ( 6 )  and (9) to be compatible it is necessary for the operator L to 

commute with both K, and K2: 

[L ,  K11=0 ( I l a )  

[ L, K2] = 0. (1lb) 

Equation (11 b) is evident by the definition of the Casimir operator K2, but the relation 
( l la)  should be verified: substituting (7) into (110) one deduces that the only choice 
for K ,  and L (to within affine transformations) is 

K , - 1- exp(wj?’)+a* exp(ojb”)j!“+b exp(2ojg’) (12a) 

L=oJ_exp(oJo)+o* exp(oJ,)+b exp(20Jo) (12b) 

where a (b) are arbitrary complex (real) parameters. 
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In order to calculate TCOC e ( J M ;  j l m , )  it is sufficient to notice that the operators 
K,, K2 with their 'q-mutators' form the algebra 

IRi, KzIY = KI 

[K2 ,  K J w  =BKz+ CiKi + D, (14) 

CK,, K , L = B K ~ + C ~ K Z + D ~  

where 

[ K , ,  KJY =e"'K,K, -e-"'&& (15) 

is the 'q-mutator'. The structure coefficients of the algebra (14).~are given by 

B=4sinh2 w(bk2+ k l A M )  

C,  = coth2 o C2=-41n1'e'"cosh20 
(16) 

D, = -2 cosh w(bkl + kzAM) 

D 2 = 2  cosh w(41a1' eo sinh2 o k l k 2 -  bAM) 

where k, are taken from (3) and AM from (6) (due to operator L commutes with K ,  
it may be replaced by the constant A M ) .  

The algebra with commutation relations (14) is known as the Askey-Wilson algebra 

._ .._.__ 1 .L..~.I-~. .C&L. _..:-:. .___-._.A,-- A...,,, in  uruer LU cunsiruu ictic. wc ~iccu int: vaiuc UI me utsunir upci~arur v IUI mw(3)  
AW(3), [4, 51. 

151: 
6 = {Kl, kl}/2+cosh20(C,K:+ C2K:)  

+ B{K, , K2)+2  cosh' o(D,K,  + D2K2) (17) 

where k , = [ K , ,  
(10)-(12), the Casimir operator takes the value 

Q = -10) '  e"' coth4 o+4)aJ2 eo cosh2w(k:+k:) 

and {. . .} denotes an anticommutator. Given the realization 

+4sinh20(b2k:+k:A~)-8sinh20 cosh20 k,k2AMb 

- COth2 o ( b Z +  Ah). 
Let us parametrize (I and b by 

a = u  b = Z v 2  sinh 201 

where 

U = exp(o/2)/2 sinh o. (20) 

(It is evident that oniy the ratio biiai is essentiai ior tine TCGC pr0biem.j 
Then we obtain the spectra 

A,,,, = 2u2 sinh 2 o (  m, + 1 )  (21) 

- j ,  s m, S j ,  - J S M S I .  (22) 

A,+, =2uZsinh2w(M+r)  
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The main feature of AW(3) is that the overlap coefficients between the eigenstates 
of KI and K2 are expressed in terms of the Askey-Wilson polynomials [6]  (or basic 
hypergeometric function @J. Applying the technique of [4,5] to our case we immedi- 
ately obtain the explicit expression for TCGC: 

where the polynomials' parameters are 

q = exp(-2o) n = m , f j ,  x = j ,  fj, - J 

N = M i  j ,  f j , .  
(24) 

The restrictions are assumed to be 

0 S n, x S N M S j 2 - j ,  S O  0 > 0. (25) 

C&) and h. are the weight amplitude and normalization factor being expressed in 
terms of Askey-Wilson polynomials' parameters [5 ,6] .  

Thus, TCGC (23) do not coincide with LCGC: the latter are known to express via 
more simple 3@2 functions (Hahn q-polynomials) instead of .,m3 (Racah) ones (23) 
(for explicit expressions of LCGC in terms of Hahn q-polynomials see [7, SI). 

The LCGC can be obtained from TCGC by the limiting procedure b+m. Indeed, in 
this limit the operator K ,  (I2a) becomes exp(2oj;))  and corresponding eigenstates 
+j,m,M coincide with 'longitudinal' ones (3). The functions @, in (23) in the limit 
b+m (i.e. f+a) are transformed into 3@2 due to 1q/ < 1. So, in this limit we indeed 
amve at the 'ordinary' LCGC. 

It is worth mentioning that in contrast to LCGC the operator L (12b) cannot be 
nrerentd sc  n r1.m nf t ~ n  rnmmmntino nnenltnrr hdnnoinn tn the C ~ S P P C  where the 

independent momenta act (like j r )  and jg' for the operator M in (4a)). So the quantum 
number m2 is not defined for the 'twisted' problem, as indicated in our notation for 
basis: Gj,m,M instead of +ji,,,j,,,. In particular, the operator L cannot be obtained 
from Jo by a unitary transformation because these operators have essentially different 
spectra (cf (4a) and (21)). 

Thus, in contrast to the standard SU(2), the 'anisotropic' nature of SU,(2) leads 
to a non-trivial Clebsch-Gordan problem essentially depending on the choice of the 
basis. The more detailed analysis of TCGC and their applications will be published 
elsewhere. 

Y.l" -..,-" I " -... I. ... " ~" ......-.... yy'."."I' "_.I.. 6...b ." ...- "~ I--- .... 1.1 ...- 
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